
New Types of Mixed-Mode Periodic Oscillations in the Belousov-Zhabotinsky Reaction in
Continuously Stirred Tank Reactors

Małgorzata Rachwalska
Department of Chemistry, Jagiellonian UniVersity, Ingardena 3, 30-060 CracoV, Poland

Andrzej L. Kawczyński*
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Complex periodic oscillations with small amplitude oscillations close to the maximal value of a large amplitude
oscillation followed by other small amplitude oscillations close to the minimal value of the next largest
amplitude oscillation are found in the Belousov-Zhabotinsky (B-Z) reaction (bromate-malonic acid-ferroin)
in CSTR. Oscillations showing identical patterns are obtained in a simple model proposed recently for a
qualitative description of transient and asymptotic oscillations observed in the B-Z system.

I. Introduction

Various complex periodic as well as chaotic oscillations have
been observed experimentally in continuously stirred tank
reactors (CSTRs) in asymptotic regimes.1-8 The periodic
oscillations observed so far exhibit patterns of the type LSn,
where L denotes oscillations with large amplitude and S means
oscillations with substantially smaller amplitudes as compared
with L, andn ) 0, 1, 2, .... In these patterns S oscillations had
their minima close to maximal values of L amplitudes or (but
not and) they had their maxima close to minimal values of L.
To our best knowledge, complex periodic oscillations in which
one type of small amplitude oscillations have their minima at
maximal value of L and, in the same pattern, other small
amplitude oscillations with maxima close to minimal value of
L have not yet been observed in chemical systems. In order to
distinguish between these two small amplitude oscillations, we
will use the notation LSnsm, where Sn is for n small amplitude
oscillations close to the maximum of L and sm is for m ones
close to minimum of L. Such patterns have been found in some
models of dynamical systems, namely in the Lorenz model,9

and its modifications,10 and also in models concerning periodic
perturbations of the Duffing-van der Pool oscillator.11

We present experimental examples of complex periodic
oscillations that have the patterns described above. We have
found them in the B-Z reaction catalyzed by ferroin. Moreover,
we show that qualitatively identical oscillations can be obtained
in a simple model that was constructed recently in order to
describe various patterns of transient and asymptotic complex
periodic oscillations observed in the B-Z system.12,13

II. Experimental Results

Analytical grade chemicals KBrO3, H2SO4, phenanthroline
(“POCh” S.A. Gliwice), and malonic acid (Aldrich) were used
without further purification. FeSO4‚7H2O was synthesized by
the authors. Ferroin solution was prepared according to the
standard method. All solutions were prepared by using double-
distilled water. Measurements were carried out in a continuously
stirred tank reactor (CSTR) at a temperature of 21°C, which
was measured in the reaction mixture. CSTR had a Teflon cover,

which allowed us to adjust the volume of the reaction mixture.
In the experiments reported in this paper the volume of the
reaction mixture was equal to 40 cm3. The stirring rate was
900 rpm. A peristaltic type pp 1-05A (Zalimp) pump with three
independent inlets was used to lead the reagents into the reactor.
One inlet was used to pump the mixture of MA and H2SO4,
and two others were used for ferroin and bromate solutions.
The initial concentrations of the reactants in the reaction mixture
were equal to [KBrO3] ) 0.19 M, [MA] ) 0.68 M, [H2SO4] )
0.32 M, and [Fe(phen)3

2+ ) 3.13× 10-3 M. The state of the
system was followed by simultaneous measurements of poten-
tials of platinum and bromide electrodes using a saturated
calomel reference electrode connected with the reaction mixture
by a salt bridge with 1 M KNO3. Changes of the potentials in
time were recorded by a MTA (Kutesz, type 1040/4) recorder
and by a PC computer. The residence timeτ was changed from
about 1 h to about 6 min. The measurements were performed
up to a dozen or so residence times in order to achieve
asymptotic regimes.

We assumed that the system achieved the asymptotic regime
when a sequence of the oscillations in the periodic pattern
observed repeated at least dozen times. We have to notice that
transient times to attain the asymptotic patterns varied in
repeated experiments from several to a dozen residence times.
During the transient regime the system exhibits sometimes
irregular (rather stochastic than deterministic chaotic) oscilla-
tions.

Experiments on transient behaviors in this system but for long
residence times have been reported recently.13 Here we present
the results for much shorter residence times and limit ourselves
to asymptotic regimes. A new type of pattern has been observed
at τ ) 10 min. After 8τ changes of the electrode potentials
became almost periodic and the pattern LS2s11 was observed in
long time intervals (see Figure 1a,b)). In this figure we show
only the small interval of the asymptotic regime. The Br-

electrode potential exhibits a large amplitude peak (L) followed
by two small amplitude peaks (S) before the potential reaches
its minimal value, and the next eleven well seen, much smaller
amplitude peaks (s) appear on the ascending part of the potential
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before the subsequent large amplitude peak appears. The
changes of the Pt electrode potential are almost synchronous
with the Br- electrode signals. However, much smaller ampli-
tude peaks appear on the descending part of the potential before
it reaches its maximum. Eleven well-distinguished small such
peaks are seen in Figure 1. In the course of the experiment some
of these peaks disappear but, instead, there appear changes of
the sign (from positive to negative) of the second derivative of
the potentials that are called “shoulders”. The total number of
peaks and shoulders remains equal to eleven.

Repeated experiments gave similar results. The pattern LS2s11

has been observed in most of them, however, not all s peaks
and shoulders were so clearly shaped as those shown in Figure
1. This can be explained by changes ofτ in the course of the
experiments as well as by variation ofτ from one experiment
to another. In all our experiments a maximal error of the
residence time was about 10%.

If τ was sufficiently long (larger than 27 min), only large
amplitude peaks L were observed in the asymptotic regime. For
τ ) 20 min the system exhibited a “mixture” of L and LS1 and

(irregular in their heights) s type small oscillations. Forτ ) 16
min only the LS1 pattern was observed without any small
oscillations of the type s, whereas forτ ) 12.8 min we observed
a mixture of LS2 and LS1 without s type small amplitude
oscillations. The pattern shown in Figure 1 was observed forτ
) 10 min. Forτ ) 7.8 min the system exhibits again the new
pattern, namely LS3s13. Decreasingτ to 6 min, we observed
the LS4sn pattern in which a dozen small amplitude oscillations
of type s appeared. These oscillations were not distinctly shaped,
and it was difficult to determine their number. Eachτ experiment
was repeated at least two times. The pattern shown in Figure 1
had been obtained in four out of five repeated experiments. In
the “unsuccessful” case we probably observed a transient regime
in which s type oscillations appeared but the reproduction of
the pattern was unsatisfied, although we run the experiment
longer than 20 residence times.

III. Model

Recently,12-14 we have suggested a simple four-variable
model that qualitatively describes regularities observed in
transients as well as asymptotic mixed-mode oscillations in the
BZ reaction

For the asymptotic regime this model reduces to the three-
variable model described by (1)-(3) with q ) q1. A detailed
analysis of the three-variable model will be presented else-
where.15 Here we limit ourselves to presenting an example of
choice of sets of values of the parameters for which the
asymptotic pattern is qualitatively identical to that observed in
our experiments. To obtain the pattern LS2s11, the following
values of the parameters were used: a) 0.081,V1 ) 10.0,V2

) 11.0,V3 ) 20.0,a ) 150,b ) 434.0,b1 ) 3.714,b2 ) 21.75,
andq ) 0.1. For these values of the parameters eqs 1-3 have
three stationary states; two of them (F1 and F2) are unstable
foci and SP is the saddle-point

In order to analyze roughly the dynamics of the system
described by eqs 1-3, let us consider eqs 1 and 2 only and
assume that the variablep is the parameter. For this two-variable
subsystem theV-nullcline (f(u, V) ) 0) forms an S-shaped curve
on the plane (u, V) andu-nullcline (g(u, o) ) 0) is a descending
line given byV ) (b - b1p - u)/b2. It is easy to see that the
S-shaped nullcline forV is given byu ) (V - V1)(V - V2)(V -
V3) + a and that its upper and lower branches are attracting
whereas the middle branch is repelling. The nullclines can have
one or three intersections depending on the “parameter”p. At
high values ofp a single steady state (SS3) (close toF2) exists
on the lower branch of the S-shape nullcline. Decreasingp gives
three steady states (SS1, SS2, SS3) through a saddle-node
bifurcation. SS2 is always a saddle point, which is positioned
close to SP. SS1 lies close toF1 on the upper branch of the
S-shape nullcline, and SS3 may be of stable or unstable focuses.

Figure 1. Time oscillations of potentials of Br (a, top) and Pt (b,
bottom) electrodes for the CSTR experiment for residence timeτ )
10 min. The asymptotic pattern LS2s11 is shown.

V̆ ) a[u - (V - V1)(V - V2)(V - V3) - a] ) af(u, V) (1)

ŭ ) b - b1p - b2V - u ) g(u, V) (2)

p̆ ) q(V - p) (3)

q̆ ) -γ(q - q1) (4)

F1 (us1 ) 146.991 375 8,Vs1 ) ps1 ) 11.271 152 38) (5)

SP (us2 ) 74.640 610 63,Vs2 ) ps2 ) 14.112 448 53) (6)

F2 (us3 ) 36.344 013 83,Vs3 ) ps3 ) 15.616 399 08) (7)
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Further decreasingp causes steady states SS3 and SS2 to
disappear through another saddle-node bifurcation, and the
steady state SS1 (close to F1) on the upper branch of the
V-nullcline remains a sole attractor. This picture of bifurcations
of the reduced two-variable system allows one to explain the
main features of the three-variable model. According to eq 3
the variablep follows the variableV. If p is large, thenV must
fall down to the lower branch of its nullcline, and “vice versa”
if p is small, thenV must grow up to the upper branch of its
nullcline. As a matter of fact, it is not necessary that at extremal
values ofp the nullclines forV andu have single intersection
points. They may intersect in three points. It is sufficient that
at a minimal value ofp the stationary state SS3 is repelling
whereas at a maximal value ofp the point SS1 is unstable.
Projections on the phase subspace (u, V) of S-shapedf(u, V) )
0 together with two positions of linearg(u, V, pmin) ) 0 and
g(u, V, pmax) ) 0 are shown in Figure 2. In the same figure the
projection of the limit cycle corresponding to the pattern LS2s11

is also shown. At proper values of the parameters a trajectory
can rotate aroundF1 as well asF2, and in this way desired
numbers of small peaks in a pattern can appear. A number of
rotations aroundF1 defines the value ofn (equal to 2) in the
LSnsm whereas a number of rotations aroundF2 givesm, which
is equal to 11 for the pattern discussed here. In Figure 3
numerical solution to eqs 1-3 for V(t) showing the pattern
LS2s11 are presented. Changing the parameters in proper ranges
one can obtain rich variety of new type mixed-mode oscillations.

IV. Conclusions

The example of the new type of mixed-mode oscillations
described in this paper show that additional efforts should be
made in order to explain them on the level of realistic chemical
models. Our model seems to be the simplest one in which such
complex periodic as well as chaotic oscillations are possible. It
is noteworthy that only one equation is nonlinear, whereas the

two remaining ones are linear. The model does not correspond
to any real chemistry in the B-Z system. However, some
qualitative correspondence between the variables of the model
and, most importantly, variables in the B-Z reaction can be
suggested. The variableV can be treated as an autocatalytic
reagent and therefore should correspond to HBrO2 in the B-Z
chemistry. The variableu is involved in a “negative feedback”
and therefore should be related to Br-, and the variablep can
be related to the concentration of the catalyst.

As a matter of fact it is not excluded that similar mixed-
mode oscillations can be obtained in the Oregonator16 and for
other three-variable models suggested for description of various
oscillations in the B-Z system.17,18Large amplitude oscillations
in the Oregonator model appear in the same way as in our
model. To model the complex periodic oscillations shown in
this paper, it is necessary to assure rotations of a trajectory
around two apparent focuses that could appear in the models
mentioned above for properly chosen values of the parameters.
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Figure 2. Projections on the phase subspace (u, V) of the nullcline for
V (the point line) and two different positions of the nullcline foru (the
dashed lines) corresponding to the maximal and minimal values ofp
for the model (1)-(3) together with the projection of the LS2s11 limit
cycle (solid line) on the same plane. The parameters have the following
values: R ) 0.081,V1, ) 10.0,V2, ) 11.0,V3 ) 20.0,a ) 150,b )
434.0,b1 ) 3.714,b2 ) 21.75, andq ) 0.1. Positions of the stationary
states for the three-variable system are marked by stars.

Figure 3. Asymptotic time oscillations of the variableV(t) for the
model (1)-(3). The parameters in eqs 1-3 are the same as in Figure
2. The pattern LS2s11 is clearly visible.
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